Improving the Representation of Aerosols in Climate Models


DOE scientists are developing a method to represent the fine details, termed “sub-grid,” of the variability of aerosols and other trace gas pollutants in climate models. Though sub-grid processes play important roles in Earth’s climate, they have been largely ignored since we do not know how to include them in current coarse grid climate models. The new methodology involves constructing probability density functions within a grid cell of a climate model for major chemically active trace gases and aerosols. The new results imply that spatial variability of pollutant emissions contributes a large share of the sub-grid variability of aerosols. This research is a first step to guide future development of improved aerosol parameterizations in climate models and to accurately quantify aerosol impacts on climate, critical for understanding and predicting future climate change.

Related Links


Qian, Y., Gustafson Jr., W. I., and Fast, J. D.: An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling, Atmos. Chem. Phys., 10, 6917-6946, doi:10.5194/acp-10-6917-2010, 2010.