Improved Understanding of Climate-Driven Vegetation Mortality


Climate-driven vegetation mortality is occurring globally and is predicted to increase in the near future. The expected climate feedbacks of regional-scale mortality events have intensified the need to improve the mortality algorithms used for future predictions, but uncertainty regarding mortality processes precludes mechanistic modeling. By integrating new evidence from a wide range of fields, DOE-supported scientists at Los Alamos National Laboratory conclude that hydraulic function and carbohydrate and defense metabolism have numerous potential failure points. These failure points are interdependent both with each other and by providing an avenue for increased mortality from destructive pathogens and insect populations (e.g., bark beetle). Crucially, most of these mechanisms and their interdependencies are likely to become amplified under a warmer, drier climate. Improved understanding of climate-driven mortality will improve our ability to predict future impacts of climate change on vegetation.


McDowell, N. G., D. J. Beerling, D. D. Breshears, R. A. Fisher, K. F. Raffa, and M. Stitt. 2011. “The Interdependence of Mechanisms Underlying Climate-Driven Vegetation Mortality,” Trends in Ecology and Evolution 26, 523-32. DOI:10.1016/j.tree.2011.06.003.